US ERA ARCHIVE DOCUMENT

Overview

- Brief Introduction
- The Yellow Cab tower
 - challenges of an urban flux site
- Selected results from previous measurements
 - Energy exchange fluxes
 - CO₂ and criteria pollutants
 - VOCs
- EPA STAR fund activities and measurements

Introduction, I

- Regional Air Quality (AQ) modeling improved
 - uses submodels for
 - emissions distribution ("inventory")
 - atmospheric transport and chemistry
 - Emissions Inventory (EI) often assumed as being known well
- Ambient AQ measurements challenge some El assumptions; inadequate?
 - Can the EI be improved?

Introduction, II

- Past efforts of El improvement
 - multivariate source apportionment using ambient
 AQ (concentration) data
 - 'real-world' emission measurements (tunnel studies)
 - AQ model studies

Our approach

- micrometeorological flux measurements
 - top-down bottom-up comparison
 - El model AND AQ model testing

Site Description, I

Hardy / Elysian Roads

Traffic Counts

Quitman Road (east/west bound)

Tower installations

The challenge

'Ordinary' flux site

- homogeneous land cover
 - well-defined footprint (MO theory)
 - well-defined flux contributors
 - limited variability
- process studies
 - attention to detail
- access to surface sites
 - upscaling / downscaling

Urban flux site

- heterogeneous land cover
 - ill-defined footprint
 - roughness sublayer
 - ill-defined flux contributors
 - high variability
- 'chaos' studies
 - attention to averages/medians
- limited access
 - private property
 - undocumented activities

Energy exchange fluxes, I

Energy exchange fluxes, II

- delayed sensible heat flux
- ➤ significant latent cooling
- ➤ large heat storage and release (with hysteresis)

Carbon dioxide (CO₂) fluxes, I

Carbon dioxide (CO₂) fluxes, II

Carbon dioxide (CO₂) fluxes, III

Criteria Pollutant Fluxes, I

Summertime (multi-month) medians

Criteria Pollutant Fluxes, II

Criteria Pollutant Fluxes, III

Criteria Pollutant Fluxes, IV

VOC fluxes, I

C. Park et al. / Atmospheric Environment 44 (2010) 2605-2614

VOC fluxes, II

VOC fluxes, II

STAR grant activities

- continued (improved) measurements (G. Schade)
 - criteria pollutants (ongoing) and VOCs (2011+2012)
 - gradient (CP, ongoing) and REA flux (VOCs, 2011+2012)
 - potentially EC CO fluxes (loaned instrument; 2011)
- additional aerosol (flux) measurements (D. Collins)
 - particle number fluxes (2011+2012)
- modeling (G. Schade, Qi Ying)(ongoing)
- (more detailed) ground survey
 - GIS improvements (ongoing)
 - roadside measurements (2011)
 - 'undocumented' emissions (2011)

Aerosol flux measurements, I

Downdrafts

Updrafts

Aerosol flux measurements, II

- approx. 80 m SS tubing, laminar flow
 - insulated
 - size-dependent line loss tests
- one or two instruments
 - Initial measurement with DMA
 - accumulate density measurements over 30 min
 - APS installed and to be used if losses not excessive
- particle flux per size range per half hour

Modeling, II

- Source apportionment
 - concentration AND flux data
 - CMB and PMF methods
- MOBILE6 vs. MOVES
- CMAQ episode modeling
 - alternate input based on measurements
 - hindcast optimization

MOBILE6 versus MOVES: Population normalized emission factors with vehicle speed (2-axle vehicles)

Expected Results

- Identify (and characterize) EI short-falls
 - example: missing isoprene and MACR emissions
- Temporal and spatial characterization of emissions, including CP and VOCs
- Improve modeling hindcasts
 - characterize needed EI changes

Improve forecasts

- Greater Houston Transportation Company (Yellow Cab)
- Texas Air Research Center (TARC)
- EPA
- Bernhard Rappenglück, UH
- TCEQ